
Aranet MQTT functionality and integration with Amazon AWS

1. General MQTT network structure:

2. MQTT message format

Sensor measurement data messages from the PRO base can be published on the MQTT broker in 3
following formats (hierarchy):

1) raw
in topic structure <root topic name>/<PRO base serial number>/sensors/<sensor
ID>/measurements/<measurement type> where
a) <root topic name> - Aranet PRO base station MQTT message identification name which

should be configured on the base MQTT page Root topic field. For more details see below
Aranet PRO base station configuration interface

b) <PRO base serial number> - serial number of PRO base station;
c) <sensor ID> - 6 HEX digit sensor ID where the first digit is the sensor segment (for details see

Segments for sensors document) and remaining 5 digits are from sensor marking from the
physical label on the sensor body which can be seen also in PRO base station graphical user
interface;

d) <measurement type> can be one of the following:
a. temperature – data is given in [C] (degrees Celsius);

https://dl.aranet.com/wp-content/uploads/2021/01/05163746/Segments-for-sensors.pdf

b. humidity – relative humidity data is given in [%] (percentage);
c. co2 – carbon dioxide concentration level data given in [ppm] (parts per million);
d. co2Abc – shows whether CO2 manual (0.000000) or automatic (1.000000) calibration

mode is enabled for the sensor;
e. atmosphericpressure – atmospheric pressure data are given in [Pa] (Pascal);
f. voltage – data are given in [V] (Volts);
g. current – electric current data are given in [A] (Ampere);
h. weight – tarred weight in [kg] (kilogram);
i. weightraw – untarred weight in [kg] (kilogram);
j. illuminance – data from LUX sensor given in [lx] (lux);
k. distance – data are given in [m] (meters);
l. vwc -volumetric water content data of soil/substrate given as [/] (the fraction of one

whole);
m. bec – bulk electric conductivity data are given in [S/m] (Siemens per meter);
n. pec - pore water electrical conductivity data are given in [S/m] (Siemens per meter);
o. dp - dielectric permittivity data of soil or substrate given in absolute numbers;
p. ppfd - photosynthetic photon flux density data are given in [umol/(m^2 s)] (micromol

per square meters multiplied by seconds);
q. pulses – pulses in each sensor measurement interval in absolute numbers [pulses];
r. derivedp – pulses measurement in each sensor measurement interval once the

sensor conversion rule is applied in user-defined units;
s. pulsescumulative - cumulative pulses in absolute numbers [pulses];
t. derivedpc – cumulative pulses measurement once the sensor conversion rule is

applied in user-defined units;
u. co – carbon monoxide concentration level data are given in [ppm] (parts per million);
v. differentialpressure – data are given in [Pa] (Pascal);
w. motorseconds – operational/switched-on (AC connection or contact closed) time of

the connected device to the sensor in each sensor measurement interval in [s]
(seconds);

x. motorsecondscumulative – cumulative or total operational/switched-on (AC
connection or contact closed) time of the connected device to the Aranet hour meter
sensors in [s] (seconds);

y. derived – derived measurements in user-defined units;
z. rssi – received signal strength data given in [dBm];
aa. battery – battery charge level which is given as [/] (the fraction of one whole);
bb. time – measurement time in Unix epoch format:

https://www.freeformatter.com/epoch-timestamp-to-date-converter.html

Additionally measurement units for the sensor data according to measurement type is published in topics:
<root topic name>/<PRO base serial number>/sensors/<sensor ID> /measurements/<measurement
type>/units

https://www.freeformatter.com/epoch-timestamp-to-date-converter.html

2) JSON (only measurement values are sent, but no sensor measurement units and alarm messages)
in topic structure <root topic name>/<PRO base serial number>/sensors/<sensor
ID>/json/measurements

3) Azure format for sensor data publishing to Azure IoT Hub platform:

Sensor alarm messages from PRO base is published on the MQTT broker in following hierarchy(format):
<root topic name>/<PRO base serial number>/sensors/<sensor ID>/alarms/ +

a. battery/activeSince – showing time in Unix epoch format when low battery charge alarm
appeared in the sensor:

b. channel/activeSince – showing time in Unix epoch format when Aranet PRO base station

recorded the event when sensor started using different radio channel than configured on the base
itself:

c. packetsLost/activeSince – showing time in Unix epoch format when Aranet PRO base station

recorded that measurement data from some sensor is not received/missing:

d. errorFlags/

a. value - showing number error code value when instead of measurements error message
was received from the sensor;

b. activeSince - showing time in Unix epoch format when instead of the measurement error
message was received from the sensors:

e. <measurement> - shows for which measured parameter configured alarm threshold was
breached;

a. value – shows measurement value that generated the alarm;
b. diff – shows value by what configured alarm threshold was breached. It is positive when

the upper threshold was breached and negative when the lower threshold is breached;
c. activeSince - shows time in Unix epoch format when alarm threshold was breached:

Aranet PRO base station publishes also:

1) name that is assigned to the sensor on the Aranet PRO base station in topic <root topic
name>/<PRO base serial number>/sensors/<sensor ID>/name and

2) product number of the sensor in topic <root topic name>/<PRO base serial
number>/sensors/<sensor ID>/productNumber:

3) name of the Aranet PRO base station itself in topic <root topic name>/<PRO base serial

number>/name:

4) name of the group that is assigned to the sensor in topic <root topic name>/<PRO base serial

number>/sensors/<sensor ID>/group and
5) numeric identifier of this sensor group in topic topic <root topic name>/<PRO base serial

number>/sensors/<sensor ID>/groupId:

3. MQTT connection configuration with Amazon AWS platform

Access AWS IoT Core console

Aranet PRO base station allows all sensor data publishing directly to AWS IoT Core, but here base only
should have a firmware version at least 2.5.17. So before proceeding further, please first check the
firmware version of the Aranet PRO base station in the graphical user interface section System 
FIRMWARE and if it is older than 2.5.17, then update to the latest version available from
https://aranet.com/downloads/ section of our webpage:

1) In web browser open AWS page https://aws.amazon.com/, sign in to the Console:

2) In console search for “IoT Core” service:

https://aranet.com/downloads/
https://aws.amazon.com/

Create a policy for MQTT connect/publish/subscribe actions

Policy will be required later when a new “thing” will be created. This procedure must be performed once
(to create a policy) unless there is a reason to have multiple policies.

1) In main menu (left side in the IoT Core console) open Security -> Policies :

2) Create a new policy (press on “Create policy”):

3) Enter the name for the policy:

4) In the “Policy document” enter following properties:
a. “Policy effect”: “Allow”,
b. “Policy action”: select “All IoT actions”,

c. “Policy resource”: enter “*”

5) Press “Create”.

6) A new policy which allows to perform all MQTT protocol actions on all MQTT topics has been
created.

Create a thing in the IoT Core

This procedure can be performed as many times as requred (once per each AranetPRO base station) as
it guides through the steps of how to create a new “thing” in IoT Core service. It will require a policy
which was created in section “Create a policy for MQTT connect/publish/subscribe actions”

1) In main menu (left side in the IoT Core console) open Manage -> Things :

2) Press on “Create things”:

3) Select “Create single thing” and press “Next”

4) Enter the name for a thing:

5) For “Device Shadow” select “No shadow”:

6) Device certificate – there are multiple options. In this example first option: “Auto-generate a
new certificate” will be used. Press “Next”.

7) Select the policy which was created previously, and press “Create thing”:

8) Download certificates and keys. Theses files will be required later when configuration on base
station for MQTT will be performed. NOTE: downloaded certificate files must be stored in a
secure place. Download and rename files accordingly:

a. Download “Device certificate” file and rename it as “aranet-pro-base.crt”

b. Download “Private key file” and rename it as “aranet-pro-base-private.key”

c. Download CA Root certificate file and rename it as “aws-root-ca.crt”

d. As a result there must be downloaded three files:

e. Download also public key (it will not be required) and press “Done”. A new “thing” has
been created.

Configure Aranet PRO base station’s MQTT to connect to AWS IoT Core

In order to connect Aranet Pro base station to AWS IoT Core using MQTT, a “thing” must be creatded in
AWS IoT Core service. Follow the steps described in “Create a thing in the IoT Core”.

1) Following step will be used to determine what is the “Host address” to which Aranet PRO bases
station will connect and the MQTT protocol version. In AWS IoT Core main menu open Test ->
MQTT test client and press on “Connection details”:

2) “Endpoint” will be used for “Host address” (in Aranet PRO base) and “MQTT version” for
“Protocol version” accordingly.

4. Aranet PRO base station configuration interface
Aranet PRO base station connection to MQTT broker is configured in the MQTT section of the graphical
user interface. In the example below we will use configuration for connection to Hivemq public MQTT
broker broker.hivemq.com:

1) Enable – enable MQTT;
2) Host address – use “Endpoint” address from the previous Chapter;
3) Port – enter “8883”;
4) Protocol version – set MQTT version from the previous Chapter – in our example MQTT v5;
5) Keepalive – use “10”;
6) Authentication - disabled;
7) QoS level – use “1”;
8) Root topic – use “Aranet”
9) Sensor measurement format – use “raw”;

10) Encryption - Amazon AWS requires sertificate validation. Use “TLSv1.2”.

a. Validate host certificate – enable to upload necessary secure connection certificates;

b. - use “aws-root-ca.crt” file saved from Amazon AWS (see previous
Chapter for details);

c. Supply client certificate - enable to upload the device public certificate and private key
for secure connection to MQTT broker

d. - use “aranet-pro-base-private.key” file saved from Amazon AWS
(see previous Chapter for details);

e. - use “aranet-pro-base.crt” file saved from Amazon AWS (see
previous Chapter for details);

11) When all necessary configuration parameters are entered, they should be saved by pressing the

blue Save icon . If configured MQTT connection is successful, then Connection successful
message will be shown on the top of the page showing also the precise time when the connection
was established.

	1. General MQTT network structure:
	2. MQTT message format
	3. MQTT connection configuration with Amazon AWS platform
	Access AWS IoT Core console
	Create a policy for MQTT connect/publish/subscribe actions
	Create a thing in the IoT Core
	Configure Aranet PRO base station’s MQTT to connect to AWS IoT Core

	4. Aranet PRO base station configuration interface

