

1

Modbus TCP/IP technical description v1.3

Aranet PRO Modbus TCP/IP server
IMPORTANT: feature requires specific license to be uploaded on the base station.

In the web GUI main page Modbus TCP/IP server configuration is available under “Modbus
TCP/IP”

2

Modbus TCP/IP technical description v1.3

Configuration controls

1. Status of Modbus TCP/IP server process;
2. Enable/Disable server process;
3. Specify TCP port number (default 502);
4. Download auto-generated address-to-measurements mapping configuration file;
5. Enable/Disable custom mapping configuration file usage. The feature allows to upload to

the base station a user-specified address-to-measurements configuration file;
6. Save configuration changes;
7. Revert to the previous configuration.

3

Modbus TCP/IP technical description v1.3

Expected Modbus TCP/IP server process statuses and their description

• "SUCCESS_NO_ERR" - no error, Modbus TCP/IP service functions correctly;
• "ERR_CONTEXT_FAILED" – error occurred. Process failed to allocate memory for the Modbus

TCP/IP server instance (not enough free memory);
• "ERR_MAPALLOC_FAILED" – error occurred. Modbus address mapping instance allocation

failed (not enough free memory);
• "ERR_CONTEXT_NULL" – error occurred. Error on opening Modbus TCP/IP server socket;
• "ERR_LISTEN_FAILED" – error occurred. Failed to listen for incoming Modbus TCP/IP

connections (port already in use);
• "WARN_ADDR_COLLISION" – warning state. Registry address overlaps with other address

(more info in the "Details"). Modbus server continues to accept incoming requests and sends
responses except for the registers with colliding addresses;

• "ERR_CONFIG_JSON_FAILED" – error occurred. Failed to load mapping configuration JSON
file;

• "MODBUS_DISABLED_BY_USER" – Service is disabled by the user. Service is not working;
• "MODBUS_DISABLED_BY_LICENCE" – An appropriate license is not available to run this

service. Service is not working;
• "WARN_OFFSET_OR_ADDRESS_OUT_OF_RANGE" – warning state. One or more used offset

values or resulting registry addresses (sum of all three offsets per measurement) are out
of t h e expected range (0-65535). Modbus server continues to accept incoming requests
and sends responses except for the registers with invalid offset values or resulting
registry addresses. More info in the "details".

• "SERV_SETTINGS_ERR_CONFIG_LOAD" - error occurred, failed to load settings
configuration file (in order to load Modbus service settings);

• "SERV_SETTINGS_ERR_JSON_EMPTY" - error occurred, the settings configuration file has
invalid JSON structure;

• "SERV_SETTINGS_ERR_WRONG_PORT" - error occurred, incorrect port number in the
service configuration;

• "ERR_OFFSET_MISSING" - error flag, offset field is missing or type is incorrect in mapping
configuration (more info in the "details").

Address-to-measurements mapping configuration file description

Modbus object types

Modbus protocol has 4 object types (usage depends on desired functionality and data type):
• Coils (1 register = single bit value; read-write function),
• Discrete inputs (1 register = single bit value; read-only function),
• Input registers (1 register = 16-bit value; read-only function),
• Holding registers (1 register = 16-bit value; read-write function).

4

Modbus TCP/IP technical description v1.3

In configuration file is expected to have each of these 4 type objects named (accordingly):

• "coils"
• "discreteInputs"
• "inputRegisters"
• "holdingRegisters"

Each type has its address range. Each range has an offset defined by the field named “offset”. The
address value is limited to two bytes (0-65535). There is no binding between each object type and
specific address range, e.g., coils can have a range: 0 - 9999, discrete inputs: 10000 - 19999,
input registers: 20000 - 29999, holding registers: 30000-39999, or any other configuration.

NOTE: Current implementation supports "Discrete input" and "Input register" object types only.
Addresses can be in the range 0-65535. All other types can be defined in the configuration file, but
they will be ignored. It refers also to function codes. Only function codes 2 (read " Discrete input")
and 4 (read "Input register") are supported.

Discrete input type returns sensor’s “packets lost” (RSSI alarm) state: 0 – alarm inactive; 1 – alarm
is active (sensor is lost). Implementation is available starting from FW version 3.2.4

Example with Modbus object data type and address offset

{
"inputRegisters": {

"offset": 30000
}

}

For "inputRegisters" object type register addresses will start from 3000X

Object type to sensor mapping

Each Modbus object type can have a set of sensors as nested JSON objects. For each sensor
object there is expected to have its own address "offset" within its parent Modbus object type address
range.

Example with sensor mapped to Modbus data type having it's offset defined

{
"inputRegisters": { "offset": 30000

"1056849": { //for this sensor register address will start from 3000X
"offset": 0

}, "4196581": {
"offset": 40 //for this sensor register address will start from 3004X

}
}

}

5

Modbus TCP/IP technical description v1.3

Numbers “1056849” and “4196581” are internal sensor identificators. Sensor’s HEX identificator
is mentioned in the comment of the auto-generated address-to-measurements mapping
configuration file (see "Configuration controls", pt.4) in the same line next to the sensor’s
identificator.

Example with sensor’s ID (4194868) and its HEX ID (400234) mentioned in the comment

"4194868": { // Sensor 400234; Address: 0

Address-to-sensor-to-measurement mapping

Measurement has its field named "offset" which is mandatory for each object and must have a
unique value between a particular sensor's other measurement offset values (the same rule applies
also to sensors – unique offset value between sensors). Sum of all three offset values
determines t h e initial address for the register.

Example with sensor measurement to address mapping

{
"inputRegisters": {

"offset": 30000
"1056849": {

"offset": 0,
"humidity": {
"offset": 1 //for input registers, initial register address is 30001

}
"temperature": {

"offset": 2 //second measurement's address for the same sensor is 30002
}

}, "4196581": {
"offset": 10, "temperature": {

"offset": 1 //register address of another sensor's measurement is 30011
}

}
}

}

Measurement data types

Data type helps to determine how to interpret received bytes on the Modbus client side. If incorrect
data type is used in case of user custom mapping configuration, e.g., unsigned type for negative values,

6

Modbus TCP/IP technical description v1.3

it may lead to incorrect value interpretation on Modbus client side. Also, incorrect length (16-bit instead
of 32-bit) can be a source of incorrect data interpretation (value cannot be encoded correctly as it is
out of the data type's specific value range).

“dataType” value Description Registry size Value range

int16 16-bit signed integer 1 -32768 to 32767

int32 32-bit signed integer 2 -2147483648 to 2147483647

uint16 16-bit unsigned integer 1 0 to 65535

uint32 32-bit unsigned integer 2 0 to 4294967295

As for the data types uint32, int32 registry size is 2 it also affects the next address value in the sequence
of addressing, e.g., if sensor's measurement initial "offset" value is 1 and it's "dataType" value
is uint32 then next measurement's offset value must be 3 (offset + registry size of the dataType). In
case of address overlapping an error message will be reported in Modbus configuration GUI (see
"Configuration controls") and both overlapping registries will not be available for Modbus requests
(ILLEGAL_DATA_ADDRESS exception will be received).

Example with sensor measurement registry data types

{
"inputRegisters": {

"offset": 30000
"1056849": {

"offset": 0,
"humidity": {

"offset": 1, //address 30001
"dataType": "uint16" //humidity is one register long and can encode

values in range from 0 to 65535
},
"temperature": {

"offset": 2, //address 30002
"dataType": "int32" //temperature is two register long and can encode values in

range from -2147483648 to 2147483647
}, "co2": {

"offset": 4, //address 30004
"dataType": "uint16" //co2 is one register long and can encode values in range from 0 to

65535
}

}

7

Modbus TCP/IP technical description v1.3

}
}

Measurement value multiplier

In the Modbus server side before value is being assigned to the registry, it is multiplied depending
on measurement's precision. In order to retrieve original measurement value, received value
must be divided by specified multiplier. Multipliers can be found in auto-generated registry
mapping configuration file (see "Confguration controles", pt.4). Same multiplier values must be
used in custom user-specified mapping configuration file.

Example with sensor measurement multipliers

{
"inputRegisters": {

"offset": 30000
"1056849": {

"offset": 0,
"humidity": {

"offset": 1, "dataType":
"uint16",
"multiplier": 10 //divide by 10 to get humidity

},
"temperature": { "offset": 2,

"dataType": "int32",
"multiplier": 1000 //divide by 1000 to get temperature

},
"co2": {

"offset": 4, "dataType":
"uint16",
"multiplier": 1 //original measurement value received

}
}

}
}

NOTE: original value multiplied by the multiplier specified in the configuration determines which
data type can be used in configuration, e.g., if original value of temperature is -40.5 and multiplier
is 1000, then result will be -40500 which is out of the data type's int16 defined range (so, data type
int32 must be used then).

8

Modbus TCP/IP technical description v1.3

Example of final configuration JSON structure

{
"5245646": { // Sensor 500ACE; Address: 20040

 "offset": 40,

 "battCharge": { // Address 20040: divide by 100 to get battCharge in fraction

 "offset": 0,

 "dataType": "int32",

 "multiplier": 100

 },

 "rssi": { // Address 20042: measurement rssi in dBm

 "offset": 2,

 "dataType": "int32",

 "multiplier": 1

 },

 "pulses": { // Address 20044: measurement pulses in pulses

 "offset": 4,

 "dataType": "int32",

 "multiplier": 1

 },

 "time": { // Address 20046: measurement time in seconds

 "offset": 6,

 "dataType": "uint32",

 "multiplier": 1

 },

 "pulsescumulative": { // Address 20048: measurement pulsescumulative in pulses

 "offset": 8,

 "dataType": "int32",

 "multiplier": 1

 },

 "derivedp": { // Address 20050: divide by 1000000 to get derivedp weight in kg

 "offset": 10,

 "dataType": "int64",

 "multiplier": 1000000

 },

 "derivedpc": { // Address 20054: divide by 1000000 to get derivedpc weight in kg

 "offset": 14,

 "dataType": "int64",

 "multiplier": 1000000

 }

 }

 }

9

Modbus TCP/IP technical description v1.3

Requesting data from Aranet PRO Modbus TCP/IP server

IMPORTANT NOTES FOR CLIENT SIDE:
o Register size: 16 bits;
o Unit ID (slave ID) – not changeable: 1
o Endianness - big-endian with high word first:

 high byte first;
 high word first (for 2 registries/32-bit values).

o Supports only:
 Modbus functions: read discrete inputs (code: 2), read input registers (code: 4);

10

Modbus TCP/IP technical description v1.3

 Modbus data types: discrete inputs, input registers (any address can be

used in supported range: 0-65535).

Used Modbus TCP exceptions

• In case if unsupported function is being requested, message with "ILLEGAL_FUNCTION" code
will be replied.

• In case if unavailable registry address is being requested, message with
"ILLEGAL_DATA_ADDRESS" code will be replied. This exception is sent also in case if particular
address is colliding with any other registry address.

• In case if uninitialized registry address is being requested, message with
"ILLEGAL_DATA_VALUE" code will be replied. Address of the registry exists, but valid data of
measurement has not been assigned yet.

Uploaded custom address-to-measurements mapping configuration file JSON used for
Input registries request example with three 2x16-bit wide registries:

{
"inputRegisters": { // Input registry type

"offset": 30000,
"1056849": {

"offset": 40,
"battCharge": { // Registry address: 30044

"offset": 4,
"dataType": "int32", "multiplier": 100

},
"rssi": { // Registry address: 30046

"offset": 6,
"dataType": "int32", "multiplier": 1

},
"time": { // Registry address: 30048

"offset": 8,
"dataType": "uint32", "multiplier": 1

}
}

}
}

11

Modbus TCP/IP technical description v1.3

Example with a request result using Modbus client application:

12

Modbus TCP/IP technical description v1.3

Uploaded custom address-to-measurements mapping configuration file JSON used for
Discrete inputs request example:

{
"discreteInputs": { "offset": 10000,

"6292285": {
"offset": 20,
"rssiAlarm": { // Registry address: 10020

"offset": 0,
"dataType": "bit",
"multiplier": 1

}
},
"4196581": {

"offset": 20,
"rssiAlarm": { // Registry address: 10021

"offset": 1,
"dataType": "bit",
"multiplier": 1

}
}

}
}

Example with a request result using Modbus client application:

	Aranet PRO Modbus TCP/IP server
	In the web GUI main page Modbus TCP/IP server configuration is available under “Modbus TCP/IP”
	Configuration controls
	Expected Modbus TCP/IP server process statuses and their description
	Address-to-measurements mapping configuration file description
	Modbus object types

	Example with Modbus object data type and address offset
	Object type to sensor mapping
	Example with sensor mapped to Modbus data type having it's offset defined
	Example with sensor’s ID (4194868) and its HEX ID (400234) mentioned in the comment
	Address-to-sensor-to-measurement mapping
	Example with sensor measurement to address mapping
	Measurement data types
	Example with sensor measurement registry data types
	Measurement value multiplier
	Example with sensor measurement multipliers
	Example of final configuration JSON structure

	Requesting data from Aranet PRO Modbus TCP/IP server
	Used Modbus TCP exceptions
	Uploaded custom address-to-measurements mapping configuration file JSON used for Input registries request example with three 2x16-bit wide registries:
	Example with a request result using Modbus client application:
	Uploaded custom address-to-measurements mapping configuration file JSON used for Discrete inputs request example:
	Example with a request result using Modbus client application:

